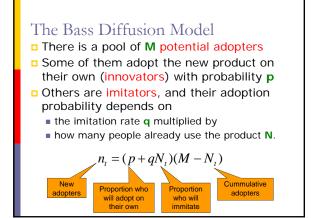
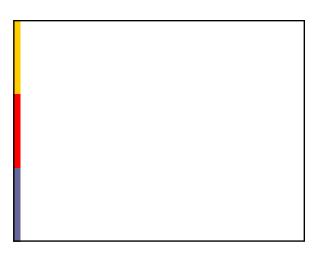
Measuring Contagion in the Diffusion of Consumer Package Goods

Rex Du University of Houston


Wagner A. Kamakura Duke University

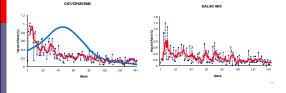

Our main goal

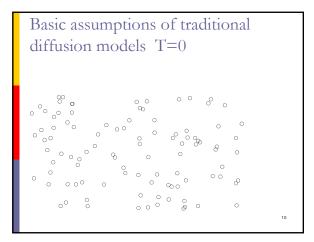
- Despite what is shown in the literature and what managers and researchers believe, we want to prove that information about new package goods diffuses through word of mouth.
- Why is this important?
 - If adopters of a new packaged-good influence other consumers, retailers can target new-product promotions to consumers who are both innovative and influential.
 - Some innovative consumers are valuable to the retailer because they:
 Buy the new product AND
 - Influence others to also buy it

Agenda

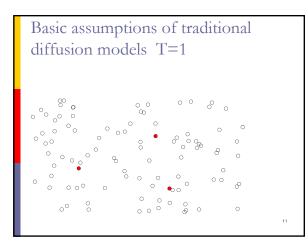
- The Bass Model
 - How innovations diffuse through word of mouth or contagion
- Common wisdom regarding the diffusion of new package goods
- Main requirements for detecting WOM or contagion
- Our proposed consumer-level diffusion model
- Results and Implications

Current common wisdom

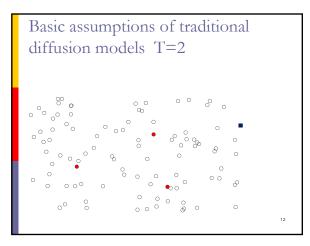

- There is no WOM or contagion in the diffusion of new packaged goods
- Why Not?
 - Consumers only talk to each other about products that are more relevant to their lives
 Ipad, Iphone, Cars, etc.
 - Laundry detergent, chewing gum, Shampoo
 - The pattern of new adoptions shows exponential decay, which is not consistent with diffusion through WOM

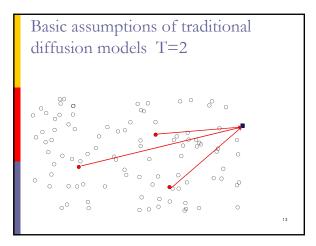

Contagion co-exists with Exponential Decay

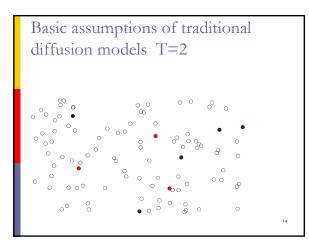
- As long as there is heterogeneity in innovativeness
 If some people are more innovative than others, they will adopt early, on their own.
 If the distribution of innovativeness is skewed (more innovators than laggards), observed adoptions will decay exponentially even though laggards imitate from innovators
 Or there is person mericoting output working it the product
- Or there is more marketing activity earlier in the product life cycle

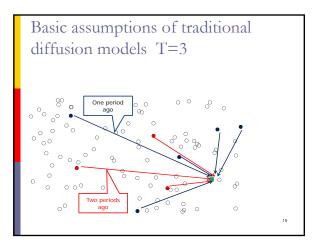


Basic assumptions of traditional diffusion models


- All consumers are equally innovative (same probability of adopting on their own) – Homogeneity in innovativeness
- Once a consumer adopts the new product, she will forever produce WOM - Temporal homogeneity
- A potential adopter is influenced by every consumer who already owns the product – Spatial homogeneity

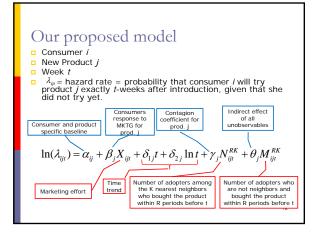




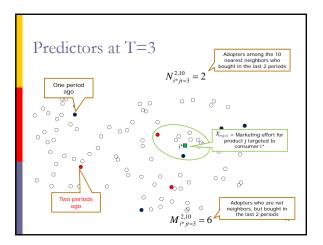


Potential biases in diffusion models

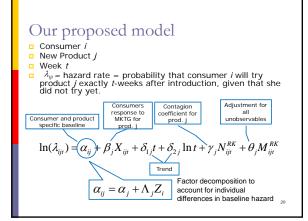
- Temporal heterogeneity
 - Influence from past adopters diminishes over time
- Spatial heterogeneity
 Nearest neighbors have more influence than distant ones
- Unobserved heterogeneity in innovativeness
 - Consumers differ on their willingness to try new products and on how soon they do it.
- Correlated unobservables
 - All unobservable factors that might affect adoption
 Advertising, Price, Sales Promotions, Distribution

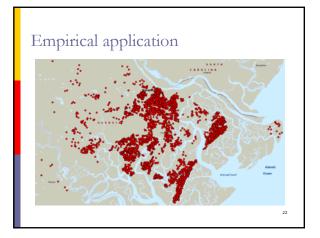

16

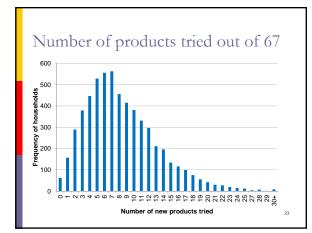
17


Main requirements for detecting contagion in diffusion models

Must account for unobservable factors

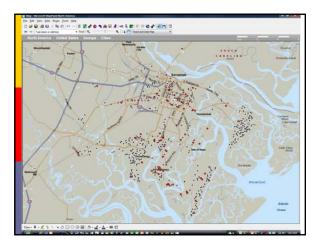

- Time-Invariant, Cross-section variant
 Stable consumer characteristics, such as innovativeness, product involvement
- Time-variant, Cross-section invariant
 Temporal trends, such as seasonality or economic conditions
- Time-variant, Cross-section variant
 Local or targeted promotions
 - Product availability

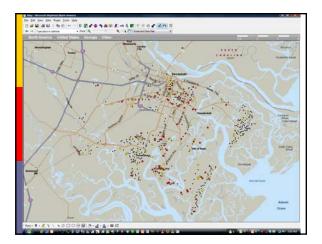


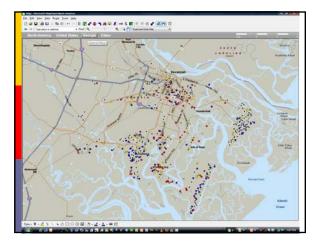

Empirical application

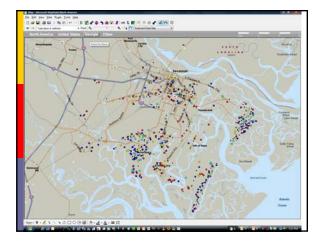
Our data

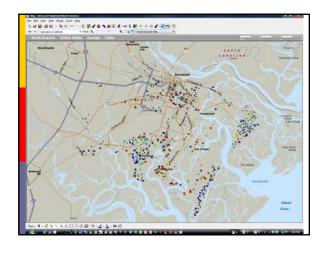
- 5,912 members of a retailer's loyalty program
 One metropolitan area
- GeocodesWeekly trial and repeat purchases
- Weekly that and repeat purchase
 124 weeks of data
- 67 new packaged-goods launched in the first 50 weeks
- Bakery, Baking mixes, Candy, Charcoal, Cookies, Condiments, Tissues/Napkins, Frozen grocery, Packaged meats, Refrigerated groceries, Salad mixes, Shelf-stable vegetables, Soft drinks, Teas, Yogurt
- Weekly prices and sales-promotions for each new product

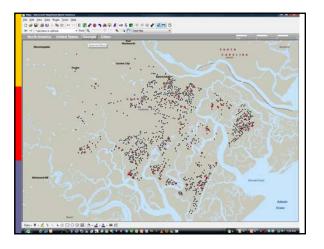


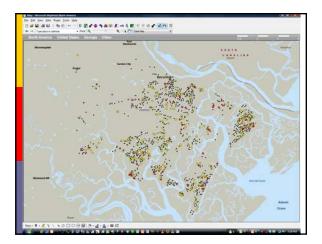


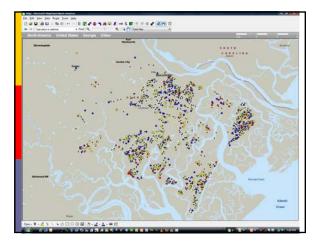

Diffusion Maps PRODUCT # 11

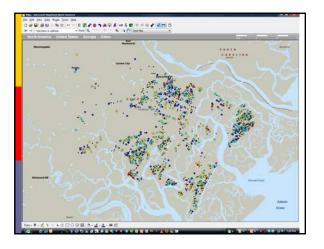


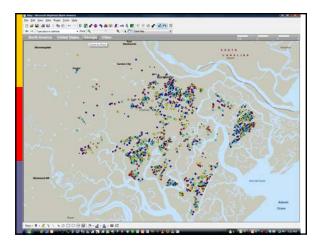


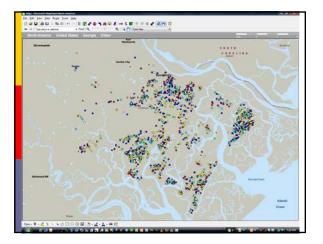

Diffusion Maps

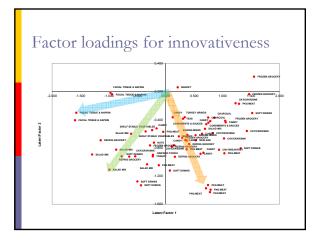












K = nearest neighbors	R = releva past perio	ds		# of Positive & Significant Contagion Coefficients			
K\R	Bayesian 4 weeks	Information Cri 8 weeks	iterion (BIC) full window (i.e., temporal homogeneity)	# of Positive & S	(n < 0.05) 8 weeks	full window (i.e., temporal homogeneity)	
0		677,800	÷	0 (i.e., no contagion)			
200	675,871	675,948	676,151	36	34	29	
500	675,672	675,832	676,080	35	36	25	
1000	675,578	675,711	675,963	40	36	17	
1500 full sample (i.e.,	675,605	675,764	675,981	36	38	13	
spatial homogeneity)	676,725	676,894	677,081	14	10	5	

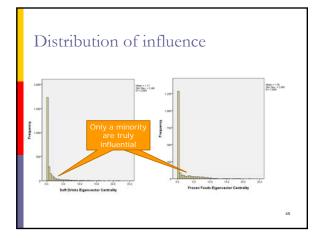
Some	nara	m	eter	est	im	ates		rection fo	
oome	Par		cici	000	11116	iceo	ి		
					Log				
				Linear	Linear	**Spatial	**Non-	Latent	Latent
Product	Intercept	Price	Promotion	Trend	Trend	Contagion	Neighbors	Factor 1	Factor 2
BAKERY	-6.495	0.262	0.634	-0.007	-0.221	3.024	0.107	0.209	0.062
BAKERY	-3.618	-0.810	-0.312	0.003	-0.453	6.782	0.209	0.229	-0.636
BAKING MIXES	-7.640	0.852	0.694	-0.012	0.150	0.485	-0.273	0.522	-0.619
BAKING MIXES	-5.937	-1.447	0.386	-0.007	0.008	2.047	1.162	0.379	-0.614
CANDY	-3.087	-2.937	0.841	-0.014	-0.041	0.644	-0.099	0.780	-0.418
CANDY	-3.615	-3.071	0.739	-0.016	0.189	1.198	-0.214	0.364	-0.694
CANDY	-3.861	-1.017	0.746	0.005	-0.279	2.287	0.405	0.120	-0.364
CANDY	-3.952	-2.285	0.718	-0.013	0.029	1.277	-0.531	-0.164	-0.523
CANDY	-4.465	-2.134	0.905	-0.017	0.024	1.766	-0.332	0.636	-0.599
CANDY	-4.576	-2.426	1.086	-0.010	-0.048	1.961	-0.422	1.052	-0.436
CANDY	-4.045	-1.714	0.372	0.003	-0.801	2.078	-0.667	0.609	-0.884
CANDY	-4.391	-3.125	0.543	0.004	-0.590	1.520	-0.154	0.660	-0.869
CANDY	-4.447	-2.300	0.924	-0.002	-0.273	2.392	-0.292	0.343	-0.687
CHARCOAL	-2.122	-0.602	0.232	-0.011	0.036	0.336	-0.052	0.853	-0.371
CHARCOAL	-15.341	1.553	0.498	-0.022	0.236	2.074	-0.726	0.744	-0.367
CKY/CRKR/SNK	-2.340	-0.508	0.228	-0.002	-0.286	0.526	0.004	1.425	-0.560
CKY/CRKR/SNK	-2.819	-1.681	0.678	-0.006	-0.069	0.761	-0.377	0.142	-0.763
CKY/CRKR/SNK	-4.604	-0.809	0.527	0.016	-0.437	0.317	0.485	1.023	-0.666

How well does the model work?

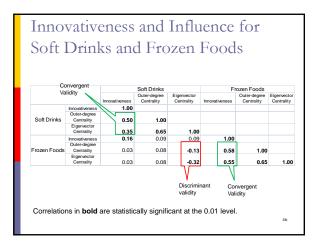
Predictive validity test

- Calibrate the model using the first 84 weeks
- Predict trials for the remaining 40 weeks
- Compare with benchmark model
 - Highly flexible Exponential-Gamma hazard model
 - Root-mean-square error (RMSE) comparing actual and predicted trial rate in each week for 40 weeks and each of the 67 new products

40

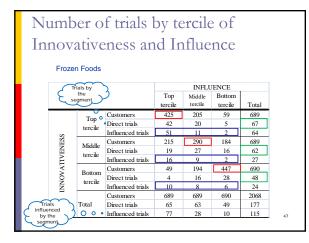

42

RMSE predicting weekly trial rates for the last 40 weeks 5.00 4.50 Benchmark model 4.00 2 3.50 DMIX <u>1</u> 3.00 CHARCOA 2.50 ITS & SAUCE 2 2.00 1.50 1.00 2.50 3.00 3.50 Proposed Model 4.00 4.50 5.00 2.00


Contagion in the adoption of packaged goods
MANAGERIAL IMPLICATIONS

Frozen Foods and Soft Drinks
Two measures for each consumer:
Innovativeness scores for consumer *A* and category
$$j = \alpha_{j} + \Lambda_{j}Z_{A}$$

Influence by consumer A on consumer B
 $W_{AB} = \sum_{j \in O_{B}} \{\exp[R_{jAB}(\gamma_{j}K_{AB})] - 1\}$
 $R_{jAB} = 1$ if consumer A purchased product *j* before consumer B, 0 otherwise
 $K_{AB} = 1$ if consumer A is a K-nearest neighbor of consumer B, 0 otherwise
Out-degree centrality $OC_{i} = \sum_{i=1}^{N} W_{ai}$


Eigenvector centrality
$$\lambda x_i = \sum_{i=1}^{N} w_{ii} x_i$$



Nı	umb	ber o	f trials l	by te	ercile	e of			
In	nov	ative	eness an	d Ir	flue	nce			
	Soft [Drinks							
	INFLUENCE								
				Top	Middle	Bottom			
				tercile	tercile	tercile	Total		
		Top tercile	Customers	514	266	81	861		
			Direct trials	66	14	8	88		
			Influenced trials	65	15	3	83		
	ES	Middle tercile	Customers	183	350	328	861		
	INNOVATIVENESS		Direct trials	15	28	21	64		
			Influenced trials	19	15	5	39		
		Bottom tercile	Customers	164	245	453	862		
			Direct trials	15	23	33	71	?	
			Influenced trials	13	10	4	27		
		Total	Customers	861	861	862	2584		
			Direct trials	96	65	62	223		
			Influenced trials	97	40	12	149	48	

Implications for the retailer

- Something useful to do with the data from the loyalty program
 First, use the data on adoptions of all new products in the past to measure each customer on the major product categories

 - InnovativenessInfluence
- □ If a manufacturer is introducing a new product:
- Who is likely to adopt it, and do it sooner?
 Who is likely to influence others?
 The value of a customer comes not only from his/her purchases, but from the purchases by influenced customers